Microcircuitry of the dark-adapted cat retina: functional architecture of the rod-cone network.
نویسندگان
چکیده
The structure of the rod-cone network in the area centralis of cat retina was studied by reconstruction from serial electron micrographs. About 48 rods converge on each cone via gap junctions between the rod spherules and the basal processes of the cone pedicle. One rod diverges to 2.4 cones through these gap junctions, and each cone connects to 8 other cones, also through gap junctions. A static cable model of this network showed that at mesopic intensities, when all rods converging on a cone pedicle are continuously active, the collective rod signal would be efficiently conveyed to the pedicle. At scotopic intensities sufficiently low for only one of the converging rods to receive a single photon within its integration time, the quantal rod signal would be poorly transmitted to the cone pedicle. This is because the tiny signal would be dissipated by the large network into which the individual rod diverges. Under this condition, the rod signal would also be poorly conveyed to the rod spherule. If, however, the rods are electrically disconnected from the network, the quantal signal would be efficiently conveyed to the rod spherule. This analysis suggests that the rod signal is conveyed at mesopic intensities by the cone bipolar pathway and, at scotopic intensities, by the rod bipolar pathway, in accordance with the results of Nelson (1977, 1982; Nelson and Kolb, 1985).
منابع مشابه
Retinal morphology and retinomotor response in Caspian kutum (Rutilus frisii subsp. kutum)
In this study, the morphology and organization of the retina of Caspian kutum and fish response to ambient light as retinomotor reaction was investigated. The Rutilus frisii subsp. kutum is an anadromous fish and important native fish specimen of Caspian Sea. The specimens were obtained from Shahid Ansari Teleost Reproduction and Culture center (Guilan province, Iran). For light and dark adapta...
متن کاملMorphology of retinal photoreceptor layer in continuous light-exposed and dark-adapted male cats
The morphology of retinal photoreceptor layer was studied in continuous light-exposed and dark-adapteddomestic male cats (Felis catus). The eyes of 12 healthy adult cats (4 in continuous light-exposed group, 4 in continuous dark-adapted group, and 4 in control group) were routinely fixed and studied by electron microscope. Results showed that the general structure of photoreceptor layer in this...
متن کاملMesopic background lights enhance dark-adapted cone ERG flash responses in the intact mouse retina: a possible role for gap junctional decoupling.
The cone-driven flash responses of mouse electroretinogram (ERG) increase as much as twofold over the course of several minutes during adaptation to a rod-compressing background light. The origins of this phenomenon were investigated in the present work by recording preflash-isolated (M-)cone flash responses ex vivo in darkness and during application of various steady background lights. In this...
متن کاملThe spectral sensitivity of dark- and light-adapted cat retinal ganglion cells.
The spectral sensitivity of cat retinal ganglion neurons (RGNs) was determined by means of extracellular recordings under scotopic and photopic conditions, in both receptive field center and surround. Test stimuli were presented either as square-wave single flashes or as flicker stimuli. Chromatic adaptation was achieved by a large steady monochromatic background field. In the dark-adapted stat...
متن کاملGenetic dissection of rod and cone pathways in the dark-adapted mouse retina.
A monumental task of the mammalian retina is to encode an enormous range (>10(9)-fold) of light intensities experienced by the animal in natural environments. Retinal neurons carry out this task by dividing labor into many parallel rod and cone synaptic pathways. Here we study the operational plan of various rod- and cone-mediated pathways by analyzing electroretinograms (ERGs), primarily b-wav...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 6 12 شماره
صفحات -
تاریخ انتشار 1986